Gap junctional intercellular communication and cellular response to heat stress.

نویسندگان

  • Nobuyuki Hamada
  • Seiji Kodama
  • Keiji Suzuki
  • Masami Watanabe
چکیده

Gap junctional intercellular communication (GJIC) is essential in the maintenance of tissue homeostasis and has been implicated in tumor suppression. Recent studies have indicated that GJIC is also involved in cellular stress responses to low dose ionizing radiation, UV light and hydrogen peroxide. However, the contribution of GJIC to the heat stress response has not yet been elucidated. We here demonstrate a potential link between GJIC and the heat stress response. First, we investigated whether the abolition of GJIC by lindane affects heat sensitivity in normal human cells. Lindane potentiated cell killing by heat shock at 43 degrees C, whereas little or no cytotoxicity was observed at 37 degrees C. Nuclear translocation of heat shock protein 72 (HSP72) was interrupted by lindane, although its induction was not affected. These results indicate that lindane exacerbates hyperthermic lethality via disrupted nuclear translocation of HSP72 protein. Second, we assessed whether heat shock alters GJIC and phosphorylation of gap junction connexin (Cx) proteins in normal human cells. Persistent heat treatment augmented Cx43 phosphorylation in a heat- and time-dependent fashion and this phosphorylation was recovered after heat shock. GJIC was also disturbed by heat shock. These results indicate that heat shock augments Cx43 phosphorylation leading to GJIC abrogation. Our present results imply that GJIC contributes to protection against heat stress and that loss of GJIC function during carcinogenesis exacerbates hyperthermic lethality.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Connexin43 in Gap Junctional Intercellular Communication in Astrocytes and Glioma Cells

Gap junctional intercellular communication built by hemichannels on cell membrane is a functional syncytium which allows rapid transfer of ions and molecules between cells. Recent findings have shown that gap junction proteins, and specifically Cx43, can play a significant role in cell migration, tissue formation and organ development, impacting adhesion and cytoskeletal rearrangements. Some li...

متن کامل

The role of stem cells and gap junctional intercellular communication in carcinogenesis.

Understanding the process of carcinogenesis will involve both the accumulation of many scientific facts derived from molecular, biochemical, cellular, physiological, whole animal experiments and epidemiological studies, as well as from conceptual understanding as to how to order and integrate those facts. From decades of cancer research, a number of the "hallmarks of cancer" have been identifie...

متن کامل

Reversibility and persistence of di-2-ethylhexyl phthalate (DEHP)- and phenobarbital-induced hepatocellular changes in rodents.

The tumor promotion stage of chemical carcinogenesis has been shown to exhibit a persistence of cellular effects during treatment and the reversibility of these changes upon cessation of treatment. Inhibition of gap-junctional intercellular communication and increased replicative DNA synthesis appear to be important in this process. The present study assessed the persistence and reversibility o...

متن کامل

Fenamates: a novel class of reversible gap junction blockers.

The effect of fenamates on gap junctional intercellular communication was investigated in monolayers of normal rat kidney (NRK) fibroblasts and of SKHep1 cells overexpressing the gap junction protein connexin43 (Cx43). Using two different methods to study gap junctional intercellular communication, single electrode voltage-clamp step response measurements and dye microinjection, we show that fe...

متن کامل

Differentiation of human fetal osteoblastic cells and gap junctional intercellular communication.

Gap junctional channels facilitate intercellular communication and in doing so may contribute to cellular differentiation. To test this hypothesis, we examined gap junction expression and function in a temperature-sensitive human fetal osteoblastic cell line (hFOB 1.19) that when cultured at 37 degrees C proliferates rapidly but when cultured at 39.5 degrees C proliferates slowly and displays i...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Carcinogenesis

دوره 24 11  شماره 

صفحات  -

تاریخ انتشار 2003